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Abstract--Two new analytical solutions allow the effects of layer thickness, vertical fault zone width and throw, 
layer compressibility, and basal slip on drape fold geometry to be investigated. Welded (Case I) and non-welded 
(Case II) lower contacts with step vertical displacement functions and an upper free surface are used as boundary 
conditions. Comparison of fold profiles, displacement fields and principal stress trajectory fields suggests that fold 
form yields relatively little information about lower boundary geometry or stress conditions. Drape folds with 
non-welded contacts, however, are distinctly asymmetric along their lower boundaries. Displacement and 
principal stress trajectory fields, on the other hand, can be used to distinguish which of the two boundary 
conditions was used to produce a given theoretical fold. Values of maximum shear stress are much higher along 
welded contacts than along non-welded contacts, suggesting that faulting and brecciation should be more 
prevalent along welded contacts. These findings are consistent with published field observations, and suggest that 
some attributes of theoretical folds---for example, lower boundary geometry and minor fracture orientation-- 
may be used to infer the conditions under which real drape folds were formed 

INTRODUCTION 

THE bending of layered rocks in response to movement 
along underlying faults, commonly referred to as drape 
folding or forced folding, has long been of interest to 
structural geologists. This paper presents two analytical 
solutions for displacements and stresses in a compres- 
sible elastic layer draped over a vertical fault zone of 
variable width, building upon earlier work by authors 
such as Sanford (1959) and Reches & Johnson (1978). 
These solutions are used to perform a series of numerical 
experiments in which the effects of layer thickness, fault 
zone width and lower boundary slip are examined. 
Although the work described in this paper was begun in 
an attempt to better understand the origin of large 
fissures in unconsolidated basin-fill sediments draped 
over buried faults in Arizona (Carpenter 1989), Nevada 
(Bell et al. 1989, Bell & Hoffard 1990), New Mexico 
(Haneberg et al. 1991) and Texas (Baumgardner & 
Akhter 1991, Keaton & Shlemon 1991), the results 
should be of interest to many structural geologists, 
mining engineers, and mineral or petroleum exploration 
geologists. A subsequent paper will develop a semi- 
analytical matrix solution for two-layer drape folds, 
allowing the influence of lower boundary conditions on 
structural style to be examined in more detail. 

Examples of drape fold geometry can be found in the 
text by Price & Cosgrove (1990, pp. 247-249) and in the 
volume edited by Mathews (1978). Laboratory experi- 
ments by Sanford (1959), Friedman et al. (1976), Logan 
et al. (1978), Whittaker & Reddish (1989) and Withjack 
eta l .  (1990) illustrate how small-scale drape folds can be 
formed under controlled conditions. Stearns (1978) dis- 
cussed in some detail the difference between welded and 
non-welded contacts between crystalline basement and 
sedimentary cover, comparing drape fold morphology 

and regional stratigraphic changes between southern 
and northern Wyoming. In cases where the lowermost 
sedimentary layer is a non-ductile sandstone or carbon- 
ate, for example the Palisades monocline in Arizona 
(Reches 1978), the fold is centered over the basement 
fault and the lower boundary has sinusoidal symmetry 
(Fig. la). In cases where the lowermost sedimentary 
layer is a ductile shale or evaporite, as in the Rattlesnake 
Mountain drape fold (Stearns 1978), the fold is believed 
to be centered above the down-thrown block and the 
lower boundary is asymmetric (Fig. lb). According to 
Stearns, this difference occurs because ductile shales can 
flow to eliminate any empty space directly above the 
fault, whereas more brittle sandstones must conform to 
basement geometry by bending, breaking, or both. 

Some geologists, not recognizing the possibility of 
ductile flow in lower layers, project surface exposures 
downward using constant layer thickness and infer the 
presence of either blind thrusts or basement folds in 
order to construct balanced cross-sections. For example, 
Anderson (1989) discounts the possibility of basement 
folding and infers a series of blind thrusts to explain the 
asymmetry of the Nutria monocline in northwestern 
New Mexico. Only the Paleozoic and Mesozoic sedi- 
mentary cover is exposed at the surface, so the basement 
structure is speculative. As with most Colorado Plateau 
monoclines, the upper, possibly overturned, anticlinal 
hinge has been removed by erosion and only parts of the 
lower synclinal hinge have been preserved. Therefore, 
only a little is known about the geometry of the complete 
monocline, and in particular it is impossible to establish 
with any certainty whether or not the monocline was 
originally overturned. 

Although thrusting, such as that proposed by Ander- 
son (1989), may be necessary to explain overturned 
drape fold limbs, the models developed in this paper will 
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(a) 

Bright Angel S ~ l e ~  apeats Sandstone 

"f ~ a r d e n a s  Lavas 

Dox Formation ~¥L~ ! ~ 
~!.~:; ' after Reches (1978) 

(b) 

inferred f 

Mesozoic cla~cs~, 
Paleozoic shales and carbonates 

i 

Pre-Cambrian basement 

after Weinberg (1978) 

Fig. 1. (a) Schematic cross-section of the lower portion of the Pali- 
sades monocline (modified from Reches 1978). Structural relief due to 
both faulting of the Tapeats Sandstone and regional tilt have been 
removed to infer drape fold geometry before the Tapeats was dis- 
rupted. This is an example of a drape fold with a welded lower contact. 
(b) Schematic cross-section of thc Rattlesnake Mountain drape fold 
(Stearns 1978), showing the inferred top of the missing Mesozoic 
section (modified from Weinberg 1978). This is an example of a drape 

fold with a non-welded lower contact. 

show that there is no mechanical reason to require the 
presence of blind thrusts to account for the asymmetry of 
non-overturned drape folds. Instead, the asymmetry 
interpreted as evidence of thrusting by some geologists 
can be developed solely due to the presence of weak 
(e.g. shale or evaporite) layers near the base of the drape 
fold. 

Previous analyses 

Analytical solutions to both linear elastic and linear 
viscous problems have been used by other workers to 
investigate the mechanics of drape folding. The general 
approach is to assume a state of plane strain, reducing 
the problem to integration of one or two biharmonic 
equations. Hafner (1951) used both polynomial and 
trigonometric solutions to study the effects of various 
stress boundary conditions, including periodic basal 
normal and shear stress distributions, on a gravity- 
loaded layer using polynomial and exponential solutions 
to the biharmonic equation. Sanford (1959) used trigo- 
nometric solutions to analyze the effects of both periodic 
stress and periodic displacement boundary conditions 
on a compressible gravity-loaded layer. However, he 
was able to derive expressions for only six of the eight 

necessary constants of integration, and had to approxi- 
mate the remaining two constants by trial and error. 
Howard (1966) applied Hafner's method to analyze 
drape folding along the Williams Range Thrust in Color- 
ado. Likewise, Couples (1977) and Couples & Stearns 
(1978) used trigonometric solutions to combine the 
effects of square-wave and sawtooth basal normal stress 
distributions with uniform basal shear stress on an elastic 
layer, and analyzed stresses in an elastic layer thrusted 
over an irregular basement. Gangi et al. (1977) used a 
novel solution method, based upon bilateral Laplace 
transforms, to solve drape fold problems for both 
welded and free-slipping basal contacts; although math- 
ematically unwieldy, this method allows the effects of 
non-analytic lower boundary conditions to be examined. 
Reches & Johnson (1978) investigated the monoclinal 
flexure of incompressible viscous multilayers by match- 
ing stresses and displacements across the boundaries of 
several single layers and numerically solving for the 
constants of integration. Koch et al. (1981) took a 
different approach, analyzing the monoclinal flexure of 
strata over laccoliths in terms of shear stresses and 
contact strengths in a layered series of thin elastic 
beams. Most recently, Spencer & Chase (1989) drew 
upon both polynomial and trigonometric solutions to 
treat stresses in an elastic layer subject to many different 
combinations of boundary conditions, including Gaus- 
sian normal stress distributions along the upper and 
lower boundaries. 

Although geologists typically envision drape folding 
as a distinctive process driven by movement along deep 
seated faults, Reches & Johnson (1978) maintained that 
folds formed over laccolithic intrusions or basement 
folds may be indistinguishable from fault-driven drape 
folding. In other words, the mechanical problem is 
somewhat divorced from the geological problem. The 
former is concerned with the response of a layer or layers 
to some distribution of driving stresses or displacements 
at depth. The latter, however, is also concerned with the 
timing and origin of the driving stresses or displace- 
ments. Therefore, although references such as Koch et 
al. (1981) and Spencer & Chase (1989) may not seem 
relevant to the geological problem of drape folding, they 
are intimately related to the mechanical problem of 
drape folding. 

MECHANICAL MODEL 

In this analysis, drape folds are modeled as compres- 
sible elastic layers subjected to two combinations of 
displacement and stress along their lower boundaries, 
corresponding to Stearns' (1978) welded and non- 
welded cases. Vertical displacement of 2B0 along the 
lower boundary, akin to movement along a buried 
vertical fault, is distributed over a horizontal distance of 
2h (Fig. 2). In both cases, vertical displacement along 
the lower boundary is specified by a Fourier series 
approximation of a step with arbitrary height and width. 
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No horizontal displacement is allowed, meaning that t h e  
elastic layer is bonded to the forcing blocks below. In 
Case II shear stress along the lower boundary is required 
to vanish, allowing the compressible layer to slip freely 
over the forcing blocks. This situation might occur if the 
compressible sedimentary cover were separated from 
rigid basement rocks by a thin ductile (e.g. shale or 
evaporite) layer. Normal and shear stresses are required 
to vanish along the top of the layers in both Case I and 
Case II, corresponding to the surface of the Earth. 

The method of solution employed in this paper has 
been described in some detail by others; therefore, 
many intermediate steps are omitted in the interest of 
brevity. Virtually all of the calculus and algebraic man- 
ipulations necessary to obtain the solutions presented 
here were performed using the computer program 
"Mathematica" (Wolfram 1988), which also translated 
results into C language expressions for numerical evalu- 
ation. 

General solution 

This analysis assumes that the drape fold forms in 
plane strain. General solutions for the two components 
of displacement, derived following the method of John- 
son & Honea (1975) and Reches & Johnson (1978) are, 
in dimensionless form, 

u 
Z = [(c, + cAz)e L" + (c3 + c4z)e -t~] I_  cos lx (1) 

nat 

v 

= mr[1 + ( A / G ) ]  - c2 

+[ (3c4+c31)+(MG)(c4+c3l) L ] t  
mr[1 + (A/G)] t- c4 e -I sin Ix, (2) 

where u is horizontal displacement, v is vertical displace- 
ment, G and A are the Lain6 constants, and ct-c4 are 
arbitrary constants of integration that will vary accord- 
ing to boundary conditions. The wave number is 

l= mr~L, (3) 

where L is the wavelength of the drape fold and n is any 
integer. Layer thickness, which will enter into the par- 
ticular solutions, is denoted by T. Both (1) and (2) must 
be solutions to biharmonic equations in u and v (Reches 
& Johnson 1978), which can be verified by the reader. 

The four displacement gradients, found by differen- 
tiating (1) and (2), are 

jTL 
Fig. 2. Illustration of geometric variables used to formulate the mech- 
anical problem. Material properties such as shear modulus and com- 

pressibility are discussed in the text and illustrated in Fig. 4. 

~...uu = _ [(Cl + c2z)el z + (c 3 + c4z)e-lZ]l sin/x (4) 
0x 

Ou 
Oz = {[c2 + l(Cl + c2z)]e lz + [c4 - l(c3 + Caz)le -t~) cos Ix 

(5) 

O__v_v = {I.(3c2 - cll) + (MG)(c2 - cll) 1 
0x [1 + (A/G)] - cflz e tz 

+ [  (3c` + c3l) + (MG)(c4 + c3') z] z} 
[1 + (A/G)] + c41 e -1 cos Ix (6) 

ozOV = {[ "(3c2-cIl)+[1 + (A/G)](A/G)(c2-Cll)-c2(lz+l)] letz 

_ [(3c4 + c3l) + (2/G)(c4 + c3l) 
L [1 + (MG)] 

+c4( lz -1)]  le -`z} sin Ix. (7) 

Equations (4)-(7) can now be used to determine 
stresses. For plane strain, the three in-plane components 
of stress (Malvern 1969, p. 505) are, in this case normal- 
ized relative to the shear modulus G, 

--d - =  + / ax (8) 

axx + + -- - -  (9) 
G / Oz G Ox 

exz - 2 (Ou + Or) 
---G- \Oz -~x" (10) 

Sign convections used throughout this analysis are illus- 
trated in Fig. 3, and e~ x = tlxz. The weight of the layer, 
which is neglected throughout this analysis, can be 
incorporated by the addition of lithostatic terms to the 
two normal stresses (Hafner 1951). The dimensionless 

(~xz 

f 
ZZ 

t 
Z 

agg 

. I - - ¢ ,  

(YZA" ~7~Z z 

Fig. 3. Sign conventions used in this analysis. Tensile stresses are 
positive, and equilibrium of moments requires that oxz = ozx. Also, 

note that the z axis is positive-upwards. 
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material constant 2 /G reflects the compressibility of the 
layer, and is related to Poisson's ratio, v, by 

2 2v 
= 1 - 2¢  (11) 

This compressibility relationship is plotted in Fig. 4. 

CASE I 

T/L = 0.2, B0/L = 0.01,  h/L = 0.01, Z/G = 0.25 

Part icular so lu t ions  
T/L = 0.2, B0/L = 0.01, tVL = 0.1, L/G : 0.25 

Once general solutions for the two components of 
displacement have been found, solution of the mechan- 
ical model requires that two stress or displacement 
conditions be specified along the upper boundary and 
two more along the lower boundary (Malvern 1969, p. 
499). These boundary conditions are necessary in order 
to evaluate the four constants of integration q--c4. 
Throughout this analysis it is assumed that the upper 
surface of the elastic layer is traction free, representing 
the surface of the Earth, so that 

o:: = 0 (12) 

o,z = o (13)  

along z = 0. Expressions for o:. and o~, are obtained by 
substituting the displacement gradient equations,(4)- 
(7), into (8)-(10) as appropriate. 

Vertical displacement along the lower boundary, z = 
- T, is given by a Fourier series of the form 

v = ~ '  b,, sin Ix, (14) 
L 

t t ~  T 

where the left-hand side of (14) is given by (2). For the 
lower boundary geometry used in this paper, 

2 B o / L  [cos ,n  h) _ ({1 _ 4n2 (h)2 
b,, = nJr - 4 n 3 ~ ( h / L  ) 2 1 L,  

[1 c o s ( ~ - ~ - ) ] t c o s ( n ~ ) -  4n ~ h 2 

, h :r L ' 

which produces a rounded step function geometrically 

-2 

-4 

-6  

In(MG) 

0.3 o . ,  

f 
Fig. 4. Relationship of the dimensionless compressibility parameter,  
;t/G, to Poisson's ratio, v. The exponential nature of this curve 
indicates that solutions will be boundless for either perfectly compres- 

sible (1, = 0) or perfectly incompressible (v = 0.5) elastic layers. 

T/L = 0.1, Bo/L = 0.01, h/L = 0.01, Z/G = 0.25 

T/L = 0.1, B0/L = 0.01, h/L = 0.1, k/G = 0.25 

.... / t J 
Fig. 5. Forms of some theoretical drape folds with bonded lower 
contacts (Case 1), illustrating the effects of changing layer thickness 
(T/L) and fault zone width (h/L). All other variables were held 
constant. The internal markers are all passive and are intended only to 

help visualize fold geometry. 

identical to that used by Reches & Johnson (1978). In 
general, any Fourier sine series can be used to specify 
vertical displacement along the lower boundary. One 
might, for example, derive a more complicated Fourier 
series to examine deformation over a series of stepped 
faults. 

The fourth boundary condition will be varied in order 
to investigate the effects of slip along the lower bound- 
ary. The two cases to be examined were chosen primar- 
ily because (1) they represent the end members  in a 
continuous spectrum of possible cases, and (2) the forms 
of the boundary condition equations give rise to rela- 
tively simple solutions. 

Following the example of Reches & Johnson (1978, p. 
308), it is assumed that the compressible layer is infi- 
nitely long, and that the drape fold represents only one- 
half wavelength of a periodic fold train. Therefore,  it is 
not necessary to specify boundary conditions at each end 
of the fold in this case. 

Case 1: We lded  contact .  For the first case, the final 
lower boundary condition is 

u = 0. (16) 

where the left-hand side of (16) is given by (1), evaluated 
at z = - T .  This corresponds to Stearns' (1978) welded 
scenario, and is analogous to the problems solved 
approximately by Sanford (1959) and numerically by 
Reches & Johnson (1978). The four constants of inte- 
gration are found by setting z = 0 in (12) and (13), and 
setting z = - T in (15) and (16). This gives rise to a set of 
four linear equations with four unknowns that, with 
some effort, can be solved algebraically to yield 
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C 1 =-~l{e3tr[- -4--2-~-- lT  2 
%.J \ ~...s ] ~ 

[ + lTe tr 1+ 2-~ + 

c2 bJ (etr e sir) 1+ 
D, G \G] J 

- b" {e"[4 + 2 2---- l T -  2 Ca - -~ 

+lTe  3it 1 + 2 ~ +  

C 4 = - - C 2 ,  

where 

3 + 4 2 - - +  + e  2tr 2 - 4  - 2  D!  
G 

+ e4/r [3 + 4 2--- + (G)2] " G 

Case H: Non-welded contact. For the second case, free 
slip is allowed along the bottom of the layer, correspond- 
ing to Steams' (1978) non-welded scenario. Thus, the 
second lower boundary conditions is 

Ox, = 0. (22) 

As in Case I, the four constants of integration are found 
by setting z = 0 in (12) and (13), and setting z = - T  in 
(14) and (22), 

bne/T 
cl = 1 + e 2t--~ (23) 

lated principal stress trajectories and magnitudes with 
observed faults, joints and minor folds. Finally, if one is 
most concerned with the nucleation and growth of small 

(17) faults, then quantities such as maximum shear stress may 
be useful tools. 

It would be difficult, as well as tedious, to evaluate all 
(18) possible combinations for the five controlling factors. 

However, it is possible to systematically evaluate the 
role of each factor by conducting a series of numerical 
experiments, which are described below. 

The theoretical drape folds in Figs. 6 and 7 illustrate 
(19) differences in form due to changing layer thickness and 

fault zone width. Values of T/L = 0.20 vs T/L = 0.10 
and h/L = 0.01 vs h/L = 0.10 were selected arbitrarily, 

(20) but the compressibility of MG = 0.25 was chosen as a 
value typical of sedimentary rocks. Except for the upper 
and lower boundaries, all of the layering is passive. In 
other words, the internal markers deform with the 
elastic layer but have no mechanical effect. They serve 
only to emphasize fold geometry. The small amount of 

(21) variation in fold form that does exist is localized along 
the lower boundaries, and, given only the shape of the 
upper surface, it would probably be impossible to pre- 
dict either the fault zone width or the lower boundary 
condition. Upon first inspection, the slopes of the upper 
surface of the h/L = 0.01 folds may appear to be slightly 
steeper than the slopes of the h/L = 0.10 folds. Close 
comparison reveals the apparent difference to be an 
optical illusion. 

The asymmetric lower boundary characteristic of 
Case II folds, for which there is a simple geometric 
explanation, may seem peculiar. Recall that only two 

CASEII 

c2 = 0 (24) 

c3 = - c l  (25) 

c4 = 0. (26) 

In either case, final results are found by calculating 
stresses or displacements for many values of n, in this 
paper 100, and adding the results together. 

RESULTS 

The solutions developed above illustrate that drape 
folding above a vertical fault---even in a single, homo- 
geneous and isotropic elastic layer-- is controlled by five 
factors: (1) layer thickness; (2) fault zone width; (3) fault 
zone throw; (4) material properties; and (5) the lower 
boundary conditions. Beyond this, however, the vari- 
ables of interest will be controlled by the nature of the 
geologic problem being investigated. For example, if the 
forms of drape folds are of primary interest, then one 
might be most interested in comparing geometric details 
of real and theoretical folds. If the orientation of minor 
structures associated with drape folds is paramount, 
then one might be most interested in comparing calcu- 

T/L = 0.2, Bo/L = 0.01, h /L  = 0.01, ;'JG = 0.25 

T /L  --= 0.2, B0/L = 0.01, h/L = 0.1, Z/G = 0.25 

T /L  = 0.1, Bo/L = 0.01, h/L = 0.01, ;VG = 0 .25  

I , I 
T/L  = 0.1, B0/L = 0.01, h/L = 0.1, MG = 0.25 

Fig. 6. Forms of some theoretical drape folds with free slip along the 
lower contact (Case IlL illustrating the effects of changing layer 
thickness (T/L) and fault zone width (h/L). All other variables were 
held constant. The internal markers are all passive and are intended 

only to help visualize fold geometry. 
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0.2 0.3 0.4 0.5 

..J 
0 0 2 t  
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00 J 1 N 

-0 .12  t I I I I I I I I 
-0 ,5 -0 .4  - 0 . 3 - 0 . 2 - 0 . 1  0.0 0.1 0.2 0.3 0.4 0.5 

( x + u ) / L  

Fig. 7. Plots illustrating components of the asymmetric Case II lower 
boundary. Geometric and material properties are T/L=O.IO, 
Bo/L = 0.01, h/L = 0.01, and A/G = 0.25. Combination of the cosinu- 
soidally symmetric u component with the sinusoidally symmetric v 
component results in the asymmetric lower boundary characteristic of 

Case It folds. 

boundary conditions can be specified along the base of 
the compressible layer. For Case II folds, the lower 
boundary conditions are of the forms v /L  = Z~= i bn sin 
lx and Oxz = 0. Therefore,  the horizontal component  of 
displacement will be non-zero along the lower boundary 
and, from inspection of (1), will vary with cos Ix. When 
the two non-zero components of displacement are com- 
bined to find the deformed co-ordinates of the lower 
boundary, (x + u, z + v), asymmetry across the fault 
will result (Fig. 8). This is especially obvious for small 
values of h / L ,  because the non-zero horizontal displace- 
ment is concentrated over a short distance. Horizontal 
displacement along the lower boundary is allowable 
because the model consists of a single, isolated layer 
along which boundary stresses and displacements are 
applied. In reality, horizontal displacement would be 

M G  = 0 . 2 5  

T/L = 0.1, B0/L = 0.01, h/L = 0.01 

zone of sut'face curvature 

M G  = 400 .00  

T/L = 0.1, B0/L = 0.01, h/L = 0.01 

zone of $uff~ce curvature 

Fig. 8. Effects of changing compressibility on the forms of otherwise 
identical folded layers subjected to Case ! lower boundary conditions, 
The compressibility parameter 2/G = 0.25 is equivalent to a Poisson's 
ratio of v = 0.10, and the compressibility parameter 2/G = 400 is 

equivalent to a Poisson's ratio of v = 0.49. 

constrained by the basement rocks. This point is 
addressed in more detail in Part II, where the no-shear 
lower boundary condition is replaced by an easily 
sheared layer of finite thickness. Under  these con- 
ditions, asymmetric folding does occur within the easily 
sheared basal layer, but is not as obvious because it is 
distributed over a layer of finite, rather than infinitesi- 
mal, thickness. In Case I folds, however, the lower 
boundary conditions are of the forms v / L  = ~,,,= 1 b,, sin 
lx and u = 0. Because only one of the lower boundary 
displacement components  is non-zero, Case I folds will 
retain the symmetry of the non-zero component.  

Layer compressibility can also have a minor influence 
on fold geometry,  as illustrated in Fig. 9. The upper fold 
was formed from a fairly compressible layer, with 
2 / G  = 0.25, whereas the lower fold was formed from a 
virtually incompressible layer, with ;~/G = 400. In terms 
of the more familiar Poisson's ratio, these values are 
equivalent to v = 0.10 and v = 0.49, which is as large a 
range as one might expect for soil or rock. All other 
things being equal, the effect of reducing layer compres- 
sibility is to increase the tightness of the fold. This 
difference is most simply expressed in terms of the width 
of the zone in which the upper boundary of the fold is 
noticeably curved. The widths of these zones, denoted 
by vertical gray lines in Fig. 9, are different for the two 
folds which otherwise differ only in compressibility. If 
the compressibility contrast is smaller, then the change 
in fold shape becomes insignificant. 

Displacement fields are markedly different for each of 
the two cases (Fig. 10). In a thin, fairly compressible 
layer, horizontal displacement directly above the fault 
zone decreases with depth in Case 1 but increases expo- 
nentially with depth in Case II. The Case II displace- 
ment field also serves to emphasize the significance of 
lower boundary horizontal displacements, which are not 
allowed in Case I drape folds, on deformed lower 
boundary shape. 

Principal stress orientations for the same two folded 
layers (Fig. 11) are also noticeably different for Case I 
and Case II folds. Because tensile stresses are con- 
sidered positive in this paper, o~ is the most tensile or 
least compressive principal stress and, for the same 
reason, 03 is the least tensile or most compressive 
principal stress. The requirement of zero horizontal 
displacement along the lower boundary in Case I drape 
folds causes principal stress trajectories near the base of 
the compressible layer to rotate. In contrast, the com- 
pressible layer can slip freely over the driving blocks in 
Case II folds, and principal stress trajectories remain 
horizontal and vertical along the shear-free lower 
boundary. Even above the boundary, Case I stress 
trajectories are broadly curved whereas Case II stress 
trajectories are generally horizontal and vertical. The 
only place where Case II stress trajectories are rotated is 
directly above the fault zone. Even directly above the 
fault, however, the Case I1 stress trajectories remain 
nearly parallel and perpendicular to the layer bound- 
aries. 

The overall intensity of stresses developed due to 
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C A S E  I 
T/L = 0 .1 ,  B0 /L  = 0.01, h/L = 0.01, )JG = 0.25 

• ~ ~ ~ ~ ~ 1 t t t t t 
~ ~ ; ~ ~ ; ; ; / / ~ " ~ ~ ~ t t t t t t t t t 

; ; ; ; ; ; ; ; ; ; ; ~ t t t t t t t t t t t t 

C A S E I I  

WL = 0.1, B ~ L  = 0.01, WL = 0.01, ~ G  = 0.25 

, t t t t t t t t t ~ ~ 
~ ~ ~ ~ ~ ~ ; ~ ~ ~ ' ' , t t t t t t t t t t t 

~ /  f t t t t t t t t t f 

all displacement vectors exaggerated 2x 

Fig. 9. Resultant displacement vector (V'u 2 + v 2) fields for thin Case I and Case II folds, with dimensionless parameters 
as indicated. Arrow length is proportional to displacement magnitude, with horizontal and vertical exaggeration of x 2. 

draping is reflected by the maximum shear stress, which DISCUSSION 
is defined as (e.g. Pollard & Segall 1987) 

~rnax = ½ X/(Ozz -- axx) 2 + 4a~z. (27) The forms of the theoretical folds presented in this 
paper are similar to those described in field studies (e.g. 

Gray-scale contour plots of maximum shear stress for Reches 1978, Stearns 1978) as well as those calculated in 
the Figs. 10 and 11 drape folds are shown in Fig. 12. The previous theoretical studies (e.g. Sanford 1959, Reches 
largest shear stresses are concentrated near the step in & Johnson 1978). Most of the deformation is concen- 
both cases. In Case I the largest values occur directly trated very near the buried fault, and both passive 
above the step, whereas in Case II they occur on either marker curvature and stresses decrease towards the 
side of the step. The mechanical difference between upper surface. Most importantly, the forms of theoreti- 
Case I and Case II boundaries is also reflected by the cal folds produced using Case I and Case II boundary 
magnitudes of maximum shear stresses for each case. conditions appear similar to real folds in which welded 
The largest value calculated for the Case I fold is nearly and non-welded lower boundaries have been inferred. 
four times the shear modulus, whereas the largest value The model results have other implications for field 
calculated for the Case II fold is somewhat less than the studies in structural geology. For example, Withjack et 
shear modulus, al. (1990), on the basis of clay model experiments, 

C A S E I  

~ L = 0 . 1 0 ,  B ~ L = 0 . 0 1 ,  W L = 0 . 0 1 , ~ G = 0 . 2 5  

+ ÷ + + + + + ÷ + ÷ + ~ * * ÷ ÷ ÷ ÷ ÷ * ÷ * + ÷ ÷  

C A S E  II 

T/L = 0.10, Bo/L = 0.01, h/L = 0.01, ;VG = 0.25 

÷ ++ ++ + ÷ + ÷ + + + + ~ ~ " - " ÷ ' ' ÷ ' * ' ~ - ÷ " ÷ " +  

i**÷÷÷÷÷÷+÷ ~. + + + ÷ + ÷ ÷ ÷ ~ - " - ' * ' ÷  "*'~- ÷ +  ~ - ÷ ' * "  + + 
+ + ÷ ÷ ÷ ÷ ÷ ÷ " ~ ÷ ~ ' * ' ' ' * "  ÷ ' * ' ÷ ' ~ ' * ' ' * ' ~ -  

+ - * - - ~ - ~ - +  ÷ ÷ ÷ ÷ ÷ ÷ ÷ 
÷ + - * - ~ - - , - + +  ÷ ÷ ÷ ÷ + ÷ 

Fig. 10. Principal stress trajectories for folds shown in Fig. 9. The most tensile (or least compressive) principal stress, o j ,  is 
denoted by the longer axes, whereas the least tensile (or most compressive) principal stress, o 3 , is denoted by the shorter 

a x e s .  
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C A S E  I 

T/L = 0.1, Bo/L = 0.01,  h/L = 0 .01,  k /G = 0 .25  
0.00 

1 3.98 

C A S E  II 

T/L = 0.1, B0/L = 0.01,  h/L = 0 .01,  Z/G = 0 .25  
0.00 

i 0.96 

Fig. 11. Maximum shear stress plots for folds shown in Figs. 9 and 10. All values are normalized relative to the shear 
modulus, G, of the draped layer. Lighter values indicate low levels of shear stress, whereas darker values indicate high levels 

of shear stress. 

suggested that the dip of a buried fault could be inferred 
from the form of the upper surface of a fold. This is not 
always true. Comparison of the folds in Figs. 6 and 7 
shows that changing fault zone geometry alone has no 
significant effect on the forms of drape folds. However, 
the theoretical folds in Fig. 9 show that layer compressi- 
bility does have an effect on the geometry of folds 
draped over identical faults. Even though the faults 
beneath both folds in Fig. 9 are vertical, the conclusions 
of Withjack et al. (1990) would lead one to incorrectly 
infer that the fault beneath the lower fold is steeper than 
the fault beneath the upper fold. It is not certain how 
horizontal extension, which was incorporated into the 
laboratory models, would affect these results. 

A second implication for field studies is that the 
mechanical stratigraphy of drape-folded sequences must 
be considered when constructing cross-sections. This is 
especially true when surface data are projected to depth. 
If weak strata such as shales or evaporites are present 
along the bottom of a drape-folded sequence, then it 
may not be necessary to infer the presence of blind faults 
to explain asymmetric folds (e.g. Anderson 1989). This 
finding is consistent with Stearns' (1978) field obser- 
vations. 

Displacement fields in folds subjected to different 
lower boundary conditions are different, and could 
provide a tool to discriminate between Case I and Case 
II lower boundary conditions. Unfortunately, it is im- 
possible to document displacement fields in the ancient 
folds studied by most structural geologists. Studies of 
near-surface deformation associated with modern-day 
groundwater withdrawal (Carpenter 1989), volcanic 
activity (Wallman et al. 1990) or aseismic fault creep 
(Bell et al. 1989, Bell & Hoffard 1990), however, may 
provide opportunities for the observation of displace- 
ment fields in active drape folds. To this end, the author 
is currently engaged in a project to monitor near-surface 
deformation due to seasonal groundwater pumping 
cycles in southern New Mexico. It is believed that cyclic 
changes in pore water pressure across buried faults in 

unconsolidated basin-fill deposits cause draping of over- 
lying layers, leading to the development of large earth 
fissures (Haneberg et al. 1991). 

Case I stress trajectories are similar to the principal 
strain trajectories published by Reches & Johnson 
(1978), who obtained a numerical solution for an incom- 
pressible viscous multilayer. The author is not aware of 
any published examples analogous to the Case II results 
presented in this paper. Principal stress trajectory fields 
suggest that ancient Case I and Case II folds might be 
differentiated on the basis of minor faults and joints 
within the main structure. For example, joints or mode ! 
cracks propagate parallel to the most compressive prin- 
cipal stress axis (short axes in Fig. 11) and perpendicular 
to the most tensile principal stress axis (long axes in Fig 
11) in order to maximize fracture propagation energy 
(Pollard & Aydin 1988). Therefore, the existence of 
broadly curving stress trajectories suggests that joints 
might exhibit a wide range of dips in Case I drape folds, 
but only a limited range of dips in Case II drape folds. In 
both cases, however, joints should be horizontal or sub- 
horizontal above the downthrown basement block and 
vertical to sub-vertical above the up-thrown block. The 
orientation of minor faults, which geologists have long 
assumed to form at angles of about +30 ° to the most 
compressive principal stress direction (e.g. Hafner 1951, 
Couples 1977), might likewise be valuable diagnostic 
tools. 

Finally, the maximum shear stress values calculated 
for Case I and Case II folds show that much higher shear 
stresses develop along welded contacts than along non- 
welded contacts. The geologic implication is that brec- 
ciation should be more prevalent along the base of Case 
I folds, as suggested by Stearns (1978). 
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